Designing FPGAs Using the Vivado Design Suite

Course Description

This course offers introductory training on the Vivado® Design Suite and helps you to understand the FPGA design flow.

For those uninitiated to FPGA design, this course helps in designing an FPGA design, which includes creating a Vivado Design Suite project with source files, simulating the design, performing pin assignments, applying basic timing constraints, synthesizing, implementing, and debugging the design. Finally, the process for generating and downloading bitstream on a demo board is also covered.

Level – FPGA 1
Course Duration – 2 days
Price – $1,600 or 16 Xilinx Training Credits
Course Part Number – FPGA-VDES1-ILT

Who Should Attend? – Digital designers new to FPGA design who need to learn the FPGA design cycle and the major aspects of the Vivado Design Suite

Prerequisites
- Basic knowledge of the VHDL or Verilog language
- Digital design knowledge

Recommended Recorded Videos
- Basic FPGA Architecture: Slice and I/O Resources*
- Basic FPGA Architecture: Memory and Clocking Resources*

Software Tools
- Vivado Design or System Edition 2018.1

Hardware
- Architecture: UltraScale™ and 7 series FPGAs**
- Demo board (optional): Kintex® UltraScale FPGA KCU105 board or Kintex-7 FPGA KC705 board**

* This course focuses on the UltraScale and 7 series architectures.
** Check with Morgan Advanced Programmable Systems, Inc, for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:
- Use the New Project Wizard to create a new Vivado IDE project
- Describe the supported design flows of the Vivado IDE
- Generate a DRC report to detect and fix design issues early in the flow
- Use the Vivado IDE I/O Planning layout to perform pin assignments
- Synthesize and implement the HDL design
- Apply clock and I/O timing constraints and perform timing analysis
- Describe the "baselining" process to gain timing closure on a design
- Use the Schematic and Hierarchy viewers to analyze and cross-probe a design
- Use the Vivado logic analyzer and debug cores to debug a design

Course Outline

Day 1
- Introduction to FPGA Architecture, 3D IC, SoC (Lecture)
- UltraFast Design Methodology: Board and Device Planning (Lecture, Demo)
- HDL Coding Techniques (Lecture)
- Introduction to Vivado Design Flows (Lecture)
- Vivado Design Suite Project Mode (Lectures, Lab)
- Behavioral Simulation (Lecture)

Day 2
- Introduction to Clock Constraints (Lecture, Lab, Demo)
- Generated Clocks (Lecture, Demo)
- I/O Constraints and Virtual Clocks (Lecture, Lab)
- Timing Constraints Wizard (Lecture, Lab)
- Introduction to Vivado Reports (Lecture, Demo)
- Setup and Hold Timing Analysis (Lecture)
- Vivado Power Estimator Spreadsheet (Lecture, Lab)
- Introduction to FPGA Configuration (Lecture)
- Introduction to the Vivado Logic Analyzer (Lecture, Demo)
- Introduction to Triggering (Lecture)
- Debug Cores (Lecture)
- Introduction to the Tcl Environment (Lecture, Lab)
- Using Tcl Commands in the Vivado Design Suite Project Flow (Lecture, Demo)
- Tcl Syntax and Structure (Lecture)

Topic Descriptions

Day 1
- Introduction to FPGA Architecture, 3D IC, SoC – Overview of FPGA architecture, SSI technology, and SoC device architecture.
- UltraFast Design Methodology: Board and Device Planning – Introduces the methodology guidelines covered in this course and the UltraFast Design Methodology checklist.
- HDL Coding Techniques – Covers basic digital coding guidelines used in an FPGA design.
- Introduction to Vivado Design Flows – Introduces the Vivado design flows: the project flow and non-project batch flow.
- Vivado Design Suite Project Mode – Create a project, add files to the project, explore the Vivado IDE, and simulate the design.
- Behavioral Simulation - Performs behavioral simulation for your design.
- Synthesis and Implementation – Create timing constraints according to the design scenario and synthesize and implement the design. Optionally, generate and download the bitstream to the demo board.
- Basic Design Analysis in the Vivado IDE – Use the various design analysis features in the Vivado Design Suite.
- Vivado Design Rule Checks – Run a DRC report on the elaborated design to detect design issues early in the flow. Fix the DRC violations.
- Vivado Design Suite I/O Pin Planning – Use the I/O Pin Planning layout to perform pin assignments in a design.
- Vivado IP Flow – Customize IP, instantiate IP, and verify the hierarchy of your design IP.

Day 2
- Introduction to Clock Constraints – Apply clock constraints and perform timing analysis.
- Generated Clocks – Use the report clock networks report to determine if there are any generated clocks in a design.
- I/O Constraints and Virtual Clocks – Apply I/O constraints and perform timing analysis.
Designing FPGAs Using the Vivado Design Suite 1

FPGA 1

Course Specification

- Timing Constraints Wizard – Use the Timing Constraints Wizard to apply missing timing constraints in a design.
- Introduction to Vivado Reports – Generate and use Vivado timing reports to analyze failed timing paths.
- Setup and Hold Timing Analysis – Understand setup and hold timing analysis.
- Xilinx Power Estimator Spreadsheet – Estimate the amount of resources and default activity rates for a design and evaluate the estimated power calculated by XPE.
- Introduction to FPGA Configuration – Describes how FPGAs can be configured.
- Introduction to the Vivado Logic Analyzer – Overview of the Vivado logic analyzer for debugging a design.
- Introduction to Triggering – Introduces the trigger capabilities of the Vivado logic analyzer.
- Debug Cores – Understand how the debug hub core is used to connect debug cores in a design.
- Introduction to the Tcl Environment – Introduces Tcl (tool command language).
- Using Tcl Commands in the Vivado Design Suite Project Flow – Explains what Tcl commands are executed in a Vivado Design Suite project flow.
- Tcl Syntax and Structure – Understand the Tcl syntax and structure.

Register Today

Morgan Advanced Programmable Systems, Inc. (MAPS, Inc.) delivers public and private courses in locations throughout the central US region; including Iowa, Illinois, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota and Wisconsin.

Visit morgan-aps.com/training, for full course schedule and training information.

You must have your tuition payment information available when you enroll. We accept credit cards (Visa, MasterCard, or American Express) as well as purchase orders and Xilinx training credits.

Student Cancellation Policy

- Students cancellations received more than 7 days before the first day of class are entitled to a 100% refund. Refunds will be processed within 14 days.
- Student cancellations received less than 7 days before the first day of class are entitled to a 100% credit toward a future class.
- Student cancellations must be sent here.

MAPS Inc. Course Cancellation Policy

- We regret from time to time classes will need to be rescheduled or cancelled.
- In the event of cancellation, live on-line training may be offered as a substitute.
- MAPS may cancel a class up to 7 days before the scheduled start date of the class; all students will be entitled to a 100% refund.

Under no circumstances is MAPS responsible or liable for travel, lodging or other incidental costs. Please be aware of this cancellation policy when making your arrangements.

For additional information or to schedule a private class contact us here.